Making access and benefit sharing work for family farmers and agroecology

CALL FOR PAPERS

In a forthcoming special issue of the magazine “Farming Matters,” ILEIA in collaboration with Bioversity will explore if and how access and benefit sharing related to plant genetic resources can work for family farmers and agroecology. The publication will primarily be based on experiences of family farmers from around the world and aims to inform farmers and practitioners, researchers, civil society, and policy makers. It will be published in collaboration with Bioversity International. Topics of interest include: linking ABS issues with  in-situ agricultural diversity  conservation and use, dynamic partnerships and projects linking in situ and ex situ conservation and sustainable use,  promotion of  farmers’ and indigenous peoples’ access to genetic resources and know-how, use of community protocols for ABS, management of biocultural landscapes, biopiracy prevention, promotion and recognition of farmers and indigenous peoples in natural resource management decision-making, climate change adaptation, poverty alleviation, training of farmers to take advantage of the ITPGRFA, and participatory plant breeding.

For the full text of the call, see the web announcement here or at http://www.agriculturesnetwork.org/get-involved/participate/call-for-contributions-access-and-benefit-sharing-can-it-work-for-family-farmers-and-agroecology

We encourage you to submit an article together with research partners!

Participatory research and capacity building: climate resilience and seeds in Zimbabwe

By Gloria Otieno, Bioversity International and Patrick Kasasa, Community Technology Development Trust

Photos by:  Tinashe Sithole, Community Technology Development Trust

Assessing local diversity in the Chibika Community seedbank, Zimbabwe

Assessing local diversity in the Chibika Community seedbank, Zimbabwe

Global climate change raises major concerns for developing countries. According to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) What’s in it for Africa? Africa’s climate is changing and the impacts are already being felt. Southern Africa has experienced an increase in annual average, maximum and minimum temperatures. The most significant warming has been during the last two decades. Minimum temperatures have risen more rapidly compared to maximum temperatures over inland southern Africa. In Zimbabwe and Zambia there have been modest decreases in rainfall. Seasonal rainfall patterns, such as the onset and duration of rains, frequency of dry spells and intensity of rainfall have changed. More frequent dry spells, coupled with more intense daily rainfall, over a shorter period of time have seen a shortening of the growing season. For example in some districts of Zimbabwe, research and meteorological reports indicate that the rainy days have reduced from 32 days to 28 days in a span of two years. The impact of this will be largely felt in the agricultural sector where climate change is likely to affect agricultural output leading to food insecurity and loss of livelihoods for rural farmers. One of the longer term adaptation strategies is to identify germplasm that is suited and adaptable to the changing climate both at present and in the future.

Participatory exercise in the Uzumba-Maranga–Pfumbwe district of Zimbabwe.

Participatory exercise in the Uzumba-Maranga–Pfumbwe district of Zimbabwe.

In view of this, Bioversity International, in collaboration with the Community Technology Development Trust of Zimbabwe (CTDT), organized a training workshop, in Harare, 11-15 May 2015, on resilience seed systems and adaptation to climate change, bringing together more than 20 scientists, breeders, GIS specialists, climate change specialists and extension workers. At the workshop, participants learned GIS and climate modelling techniques to identify climate challenges in selected communities in the Uzumba-Maranga–Pfumbwe (UMP) and Tsholotsho districts in Zimbabwe and further identify germplasm that could be used in the future. Participants also visited a community seedbank in UMP and conducted participatory exercises to identify climate challenges; assess local diversity within the community and determine whether these meet their needs; and identify traits that they need for present and future climate change adaptation.

Figure 2: Map showing areas with similar temperatures (minimum and maximum) in 2050 and the selected accessions from those areas (using DIVA-GIS crop suitability modelling).

Figure 2: Map showing areas with similar temperatures (minimum and maximum) in 2050 and the selected accessions from those areas (using DIVA-GIS crop suitability modelling).

Results from the exercises reveal that these communities are facing increased minimum and maximum temperatures and shorter rainy days. An analysis of 2050 climate using one climate model – DIVA-GIS crop suitability modelling – also reveals that mean, minimum and maximum temperatures will increase and although rainfall will increase slightly, it is likely to be more erratic with shorter rainy days (see Figure 2). Farmers identified the following traits, in order of importance, as some of the characteristics that they would want to see in a variety being bred for future climates: 1) early maturing; 2) high yielding and 3) resistant to pests and diseases.
By looking at accessions from national genebanks and international sources such as GENESYS (global portal to information about Plant Genetic Resources for Food and Agriculture), the group identified accessions of finger millet, sorghum and pearl millet which will now be tested with farmers.

Participants in the training workshop on resilience seed systems and adaptation to climate change, 11-15 May 2015, Harare, Zimbabwe.

Participants in the training workshop on resilience seed systems and adaptation to climate change, 11-15 May 2015, Harare, Zimbabwe.